VINCENT MASSEY ONLY
Tn= T1+D(N-1)
Sn= N/2[2(t1)+D(n-1)]
Sn= N/2(T1+Tn)
Tn=(T1)(R^(n-1))
Sn=[T1(1-R^n)]/1-R
S∞= T1/(1-R)
x= -b±√b^2 -4ac / 2a
discriminant: b^2 - 4ac
Graph:
Standard Form: y=a(x-p)^2 +q with V( Vertext): (p,q)
Factored Form: y=a(X-X1)(X-X2)
General Form: y=ax^2 + bx+c
Equation of a line: y=mx+b m=slope: y2-y1/x2-x1 b=y-int
Angles:
a/SinA=b/SinB=c/SinC
Sinθ= y/r,Cosθ=x/r,Tanθ=y/x
c^2= a^2+b^2-2abCosC
x=rCosθ and Y=rSinθ P(X,Y)
1/x-a with vertical asymptote x=a and hrizontal asymptote y=0
y=[x]→y={-x,x≤0; x,x>0